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ON THE SECONDARY INSTABILITY OF THE MOST

DANGEROUS GORTLER VORTEX.

S. R. Otto 1 and James P. Denier 2
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2University of New South Wales, Kensington, NSW 2033, Australia

ABSTRACT

Recent studies have demonstrated the most unstable GSrtler vortex mode is found

in flows, both two and three-dimensional, with regions of (moderately) large body

curvature and these modes reside within a thin layer situated at the base of the con-

ventional boundary layer. Further work concerning the nonlinear development of the

most dangerous mode demonstrates that the flow results in a self induced flow re-

versal. However, prior to the point at which flow reversal is encountered the total

streamwise velocity profile is found to be highly inflectional in nature. Previous work

then suggests that the nonlinear vortex state will become unstable to secondary, in-

viscid, Rayleigh wave instabilities prior to the point of flow reversal. Our concern is

with the secondary instability of the nonlinear vortex states, which result from the

streamwise evolution of the most unstable GSrtler vortex mode, with the aim of deter-

mining whether such modes can induce a transition to a fully turbulent state before

separation is encountered.
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No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681
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1. Introduction

The most dangerous G6rtler vortex mode has recently been identified by Denier et

al (1991) (see also Wimoshin (1990)). This mode is found to have a streamwise growth

rate of O(G a/s) and is localized in a thin, O(G -1/5), viscous layer located at the solid

boundary. The effect of crossflow on this mode has been demonstrated by Bassom

Hall (1991) to have a stabilizing effect. The nonlinear evolution of the most dangerous

mode has been considered in a series of articles; for two dimensional flows by Denier &

Hall (1993) a_ld for three dimensional flows by Otto & Bassom (1993). In both cases

the vortex induced mean flow results in a region of reversed flow at some finite distance

downstream of the position at which the perturbation is first introduced. However,

prior to such a flow reversal the total streamwise velocity fields are seen to be strongly

inflectional in nature and thus we anticipate that such flows will be highly susceptible

to secondary inviscid instabilities in the form of Rayleigh waves.

In the case of order one wavenumber/GSrtler number regime Hall &: Horseman

(1991) found that the highly inflectional velocity profiles found in Hall (1988) are

unstable to inviscid Rayleigh instabilities and demonstrated good agreement with the

experimental results of Swearingen &: Blackwelder (1987).

In the situation under consideration the equation governing the perturbation

quantities is the three-dimensional Rayleigh pressure equation obtained by Hall &

Horseman (1991). We obtain solutions of this boundary value problem in order to

ascertain the temporal stability of a given vortex flow profile. Since the presence of

the vortex implies that the underlying basic state has a periodic spanwise structure,

we elect to retain the spanwise variation by only assuming that the periodicity of the

secondary modes are the same as the that of the vortices. In fact we find that the

most unstable modes are comprised of significant contributions from the mean, fun-

damental and second harmonic components. Similar observations have been made by

Balachandar, Streett &: Malik (1992), in their work concerning the secondary insta-

bility of rotating disk flows. Somewhat surprisingly this procedure does not generate

any odd modes, those which are 7r/2 out-of-phase with the underlying vortex state,

of the form found by Hall & Horseman (1991). However, by explicitly apply spanwise

boundary conditions applicable to the odd modes additional unstable modes can read-

ily be obtained but which have smaller growth rates than the those labeled secondary

in Figure 1, (see Otto & Denier (1993) for further details).

The remainder of this article is structured as follows: in section 2 we shall smn-

marize the derivation of the equations governing the nonlinear vortex state, and derive
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tile inviscid Rayleigh pressureequation. In section3 somebrief commentswill be made

concerningthe numerical methods used to solvethe Rayleigh equation, and in section
4 we shall commenton our findings and discusspossible fllture topics of interest, and

finally in section 5 weshall draw someconclusions.

2. Governing equations

In this article we consider a boundary layer flowing over a yawed cylinder, this

flow has been previously considered in Hall (1985) and the reader is referred to that

paper for details. The Reyn.olds number Re and Ggrtler nmnber G are defined by

UL

l�

where U is a typical flow velocity in the streamwise direction, L is a characteristic

streamwise lengthscale and u is the kinematic viscosity of the fluid. The curvature of

the cylinder is taken to be _X0 (-_) where the function X0 is supposed to be smooth

and positive. With these definitions 5 = L/b where b is a typical radius of curvature

of the cylinder. The Reynolds number is taken to be large whilst 5 is sufficiently small

so that as _ ---* 0 the parameter G is fixed and is of order one (when compared to

the Reynolds number). We will subsequently consider the large Ggrtler number limit

relevant to the most dangerous Ggrtler vortex mode.

The nonlinear evolution of the most dangerous Ggrtler mode occurs over an

(G -WS) spatial lengthscale, (where now we are assuming G > 1), and is confined to

an O(G -1/_) viscous layer located at the solid boundary. With the effect of crossflow
1 3

of order O(R-[_G_) the modes evolve over an O(G-[) temporal scale. The resulting

equations governing the nonlinear evolution of the most dangerous Ggrtler mode are

given in Otto & Bassom (1993) (also Denier & Hall (1993), Timoshin (1990)). For the

sake of brevity the reader is referred to the aforementioned papers for fill details.

Here we make a few brief remarks concerning the results of the previous calcu-

lations of the nonlinear evolution of the most unstable Ggrtler mode. The work of

Denier _: Hall (1993) demonstrates that the evolution of this mode results in a self

induced flow reversal at some finite distance downstream of the position at which a

disturbance is first introduced into the boundary layer. This result was independently

confirmed by Otto & Bassom (1993) in their work on the effect of crossflow on the

nonlinear evolution of the most dangerous Ggrtler mode. However, in both cases, it



was demonstrated that the total flow field becomeshighly inflectional in nature prior

to the point at which flow reversal is found.

To considerthe secondaryinstability of suchhighly inflectional profiles weconsider

perturbations to the total velocity field in the form of inviscid Rayleigh waves. The

spatial and temporal scalesof thesemodes are on the sameorder as the viscous wall

sublayer in which the nonlinear vortex resides,namely O( G-1/S Re-1/2 ). We consider

perturbations to the nonlinear vortex state of the form

where a is the streamwise wave nmnber and c is the complex wave speed; here

U, l)', l_, ]5 are ftuictions of the scaled variables y and z and A is the small per-

turbation parameter. The equation governing the perturbation quantities are most

easily written by eliminating 0", V, _V to give the three-dimensional Rayleigh pressure

equation

(02P c02P a2 p 2 Off OP ---_z = O. (2.1)
Og-----T + Oz-----T - _ - c -_y Oy + Oz

We impose the usual inviscid boundary conditions, namely vanishing normal velocity

at the solid boundary togeth'er with the requirement that the perturbation decays as we

leave the viscous wall layer. In terms of the pressure perturbation these requirements

beconle

OP=o at y=0, /5--*0 as y---_o¢. (2.2)
Oy

We also impose the condition that the wave has the same spanwise period as the

underlying nonlinear vortex state, hence

P(z) = P(z + 2_r), (2.3)

where k is the spanwise wavenumber of the vortex velocity field. The form of fi is

given by the total streamwise velocity from the vortex calculation, and is

(2.4)

with fi(z) = g(z + 2rr); the term y in relation (2.4) is the basic shear in the viscous

wall layer and U is the vortex induced flow. This system now represents an eigenvalue

problem which can be solved for a given a to determine a complex phase speed c and

thus determine the inviscid temporal instability of the flow at a given streamwise, x

location.
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3. Numerical techniques

In this section we describe the techniques used to solve the elliptic equation (2.1).

We discretize the system using a five-point regular spanwise stencil and a stretched

three point stencil in the normal coordinate. As the Rayleigh wave s are presumed to

have the same period (or integer divisors thereof) as the vortex, we alias the point

at z = 21r to have the same value as that at z = 0. Tile stretclling in tile normal

coordinate ensures that the far field boundary condition can be imposed at a suitably

large (but finite) value while still retaining resolution at the wall. The discretized

version of equation (2.1) may be written as

Ai'Pi+1 + BiTPi + Ci_)i_l = O, (3.1)

Twhere T'i = (/5il,/5i2,.../SiM , where tile subscript i denotes the value at yi. In

the system (3.1) the matrices Ai and Ci are diagonal, a fact that is exploited by the

particular block solver written to solve (3.1). To impose the asymptotic condition we

notice that/5 satisfies

02/5 2 0/5 a2/5 = 0,
Oy 2 y -- c Oy

as y --* oo, where we have made use of the fact that the vortex is confined to the

viscous wall layer. This equation has the decaying solution

P = (y + A)e -_'y,

where A is a fimction of a mid c but is not relevaalt here. We choose to impose this

condition at y = yoo by using the Robin condition,

1 oP 1

/5 ov v

This outer limit is chosen so that changing it does not affect the calculation. In this

study we choose to allow both odd and even modes, mid thus we solve over the whole

period rather than half the range as in Hall & Horseman (1991). This allowed us

to have mixed modes which are necessary in the three-dimensional basic states cases.

Tile problem was normalized using the same method as in Hall & Horseman (1991)

by imposing the constraiut

0P
-- = 1 at y = 0 Vz. (3.2)
Oy
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We then iterate on the complex phase speed c to drive the coml)lex nmnber,

t

1

to zero, where we use a two-dimensional real secant method. When the system is

renormalized the condition (3.2) is in fact Py = 0, at y = 0.

In general 32 points per period were used in the spanwise coordinate whereas the

normal grid was made up of 90 points, with an infinity of yoo = 50. hi general the

same number of points were used for these calculations as were employed in Otto

Bassom (1993) for the vortex calculations.
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Figure 1. Growth rates aci of the primary and secondary modes

5



4. Results and Discussion

We will limit our discussion to the secondary instability of the nonlinear vortex

state obtained by Denier & Hall (1993); further results concerning the effect of crossflow

on the secondary modes will be presented in an future paper (see Otto & Denier (1993)

for full details). The details of the solution of the governing equations for the nonlinear

vortex state can be found in Denier & Hall (1993) and Otto & Bassom (1993); the

reader is referred to the aforementioned papers for a discussion of the numerical scheme

used to integrate the nonlinear vortex equations.

In figure I we present the temporal growth rate of the two major modes which were

found. The modes marked 'prinlary' are conjectured to be projections of the primary

vortex onto the reduced inviscid equations. The disturbances marked as 'secondary'

are the modes that we are interested in. They have substantially greater growth rates

and thus are likely to be more dangerous. The latter modes are characterized by the

mnount of energy present in the second harmonic.
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Pressure contours for _x=0.16, primory
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Figure 2a. Iso-pressure contours for the case c_ = 0.16 (primary).
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Figure 2b. Iso-pressure contours for the case a = 0.16 (secondary).

In figure 2a we show the contours of ]t51 for the case a = 0.16 for the primary

disturbance, it should be noted that this mode seems to reside near the vortex. In

figure 2b we show the contours of pressure for the case a = 0.16 for the true secondary

disturbance. Notice that this mode has maxima just 'outside' the vortex, (as a in-

creases this phenomena increases in clarity). In Figure 3a,b we present the Fourier

decomposition of the two modes, notice these modes are comprised virtually entirely

of cosine components, and hence we do not show the sine coefficients. In Figure 3a

we note that the majority is confined to the the fundamental and the two-dimensional

component (which is not shown), however in figure 3b the mode labeled the 'secondary'

disturbance can be seen to have a significant second harmonic component. These re-

sults lend credence to the physical significance of the 'primary' and 'secondary' modes

pictured in Figure 2.
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By imposing periodicity in the spanwise coordinate we were able to find two

distinct modes,here referred to as the primary aaldsecondarymode but were unable

to demonstrate the existenceof any 'odd' modes which lie rr/2 out-of-phase to the

underlying vortex velocity field. However,by removing this requirement and instead

imposing boundary conditions appropriate to such odd disturbances we are indeed
able to demonstrate the existenceof suchmodes;the full results of this study will be

presentedin a forthcoming paper (seeOtto & Denier (1993)).

5. Conclusions

We have shown that flow situations involving a nonlinear vortex are susceptible to

inviscid disturbances with large growth rates. One of the major points that should be

noted from this work is that the most unstable secondary modes have significant second

harmonic components, which perhaps should be incorporated in the analytic approach

to this class of problems. A similar phenomena has been observed in the secondary

instability of rotating disk flows by Balachandar, Streett & Malik (1992), the reader

is referred to that paper for further insight into the nature of these disturbances.

It is not clear whether flows which are inflectional in nature in the absence of

the vortex will be stabilized or destabilized by the introduction of a vortex state;

such a question deserves further consideration. Finally, it would be an interesting and

significant problem to consider the effect of increasing the amplitude of the inviscid

wave to determine whether a vortex/wave interaction could ensue.
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